WGU-Capstone/Face_Detect with borders.py

79 lines
2.3 KiB
Python
Raw Normal View History

2023-09-22 18:26:47 -07:00
import cv2
import numpy as np
def check_within(imgSize, baseMultiplier, currentX, currentY, currentW, currentH):
baseYbottom = imgSize[0] * baseMultiplier
baseXRight = imgSize[1] * baseMultiplier
upperMultiplier = 1 - baseMultiplier
baseYTop = imgSize[0] * upperMultiplier
baseXLeft = imgSize[1] * upperMultiplier
currentBottomY = currentY + currentH
currentRightX = currentX + currentW
print(str(baseYbottom) + " " + str(currentY))
if baseYbottom > currentY:
return (255, 255, 255)
elif baseYTop < currentBottomY:
return (0, 0, 0)
elif baseXRight > currentX:
return (255, 0, 0)
elif baseXLeft < currentRightX:
return (0, 0, 255)
else:
return(0, 255, 0)
cap = cv2.VideoCapture(0, cv2.IMREAD_GRAYSCALE) # instead of grayscale you can also use -1, 0, or 1.
faceCascade = cv2.CascadeClassifier(r"C:\Users\Owner\Desktop\Face Detection\haar_frontface.xml") # CHECK THIS FIRST TROUBLE SHOOTING
tmp, frm = cap.read()
height, width, channels = frm.shape
print(f"{height*.25}, {width}")
del tmp, frm
#Color is 1, grayscale is 0, and the unchanged is -1
while(True):
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Detect faces in the image
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30)
)
print("Found {0} faces!".format(len(faces)))
# Draw a rectangle around the faces
for (x, y, w, h) in faces:
color = check_within([height, width], .1, x, y, w, h)
cv2.rectangle(frame, (int(width*.1), int(height*.1)), (int(width*.9), int(height*.9)), (150, 0 , 150))
cv2.rectangle(frame, (x, y), (x+w, y+h), color)
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cap.destroyAllWindows()
# you can save the image with
# cv2.imwrite('watchgray.png',img)
'''
instead of the above code you can replace everything below
img = cv2....
with
plt.imshow(img, cmap = 'gray', interpolation = 'bicubic')
plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis
plt.plot([200,300,400],[100,200,300],'c', linewidth=5)
plt.show()
for a matplotlib chart
'''