added training data generator files

This commit is contained in:
Nickiel12 2023-10-09 17:39:21 -07:00
parent fd5ef26e2b
commit 8130026a38
16 changed files with 231 additions and 51 deletions

8
.gitignore vendored
View file

@ -2,4 +2,10 @@
venv/*
output/*
.envrc
training_data/*
training_data/data*
training_data/info*
training_data/training_data_*/
training_data/*.vec
training_data/backgrounds.txt
training_data/negatives
training_data/opencv

54
Main.py
View file

@ -82,12 +82,7 @@ if args.file:
cap = cv2.VideoCapture(args.file)
else:
cap = cv2.VideoCapture(0, cv2.IMREAD_GRAYSCALE) # instead of grayscale you can also use -1, 0, or 1.
faceCascade = cv2.CascadeClassifier(r"./cascades/lbpcascade_frontalface.xml") # CHECK THIS FIRST TROUBLE SHOOTING
faceCascade_default = cv2.CascadeClassifier(r"./cascades/haarcascade_frontalface_default.xml")
faceCascade_alt = cv2.CascadeClassifier(r"./cascades/haarcascade_frontalface_alt.xml")
faceCascade_alt2 = cv2.CascadeClassifier(r"./cascades/haarcascade_frontalface_alt2.xml")
faceCascade_alttree = cv2.CascadeClassifier(r"./cascades/haarcascade_frontalface_alt_tree.xml")
profileFaceCascade = cv2.CascadeClassifier(r"./cascades/haarcascade_profileface.xml")
faceCascade = cv2.CascadeClassifier(r"./cascades/cascade_10.xml") # CHECK THIS FIRST TROUBLE SHOOTING
datestamp = "{:%Y_%m_%d %H_%M_%S}".format(datetime.datetime.now())
output_dir = r"./output/" + datestamp + r"/"
@ -112,49 +107,10 @@ while(True):
# Detect faces in the image
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30)
)
if len(faces) == 0:
faces = faceCascade_default.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30,30)
)
if len(faces) == 0:
faces = profileFaceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30,30)
)
if len(faces) == 0:
faces = faceCascade_alt.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30,30)
)
if len(faces) == 0:
faces = faceCascade_alt2.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30,30)
)
if len(faces) == 0:
faces = faceCascade_alttree.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30,30)
scaleFactor=1.2,
minNeighbors=2,
# minSize=(70, 90)
minSize=(200, 200)
)
# Draw a rectangle around the faces

View file

@ -18,3 +18,8 @@ Now you can run the program. It is recommended to run the program with -d and -o
Training Data:
https://www.kaggle.com/datasets/utkarshsaxenadn/landscape-recognition-image-dataset-12k-images
create positives from the negatives: \opencv\build\x64\vc15\bin\opencv_createsamples.exe -img .\positives\face_1.png -bg .\bg.txt -info info/info.lst -pngoutput info -maxxangle 0.8 -maxyangle 0.8 -maxzangle 0.8 -num 1950
Create vec files from positives: .\opencv\build\x64\vc15\bin\opencv_createsamples.exe -info .\info\info.lst -num 1950 -w 80 -h 80 -vec positives-80.vec
(I created a 20, 40, and 80) we have 1650 positives

BIN
training_data/TestVideo.mp4 Normal file

Binary file not shown.

View file

@ -0,0 +1,93 @@
import cv2
import sys
(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
if __name__ == '__main__' :
# Set up tracker.
# Instead of MIL, you can also use
tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN', 'MOSSE', 'CSRT']
tracker_type = tracker_types[1]
if int(minor_ver) < 3:
tracker = cv2.Tracker_create(tracker_type)
else:
if tracker_type == 'BOOSTING':
tracker = cv2.TrackerBoosting_create()
if tracker_type == 'MIL':
tracker = cv2.TrackerMIL_create()
if tracker_type == 'KCF':
tracker = cv2.TrackerKCF_create()
if tracker_type == 'TLD':
tracker = cv2.TrackerTLD_create()
if tracker_type == 'MEDIANFLOW':
tracker = cv2.TrackerMedianFlow_create()
if tracker_type == 'GOTURN':
tracker = cv2.TrackerGOTURN_create()
if tracker_type == 'MOSSE':
tracker = cv2.TrackerMOSSE_create()
if tracker_type == "CSRT":
tracker = cv2.TrackerCSRT_create()
# Read video
video = cv2.VideoCapture("./TestVideo.mp4")
# Exit if video not opened.
if not video.isOpened():
print("Could not open video")
sys.exit()
# Read first frame.
ok, frame = video.read()
if not ok:
print('Cannot read video file')
sys.exit()
# Define an initial bounding box
bbox = (287, 23, 86, 320)
# Uncomment the line below to select a different bounding box
bbox = cv2.selectROI(frame, False)
# Initialize tracker with first frame and bounding box
ok = tracker.init(frame, bbox)
while True:
# Read a new frame
ok, frame = video.read()
if not ok:
break
# Start timer
timer = cv2.getTickCount()
# Update tracker
ok, bbox = tracker.update(frame)
# Calculate Frames per second (FPS)
fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer);
# Draw bounding box
if ok:
# Tracking success
p1 = (int(bbox[0]), int(bbox[1]))
p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1)
else :
# Tracking failure
cv2.putText(frame, "Tracking failure detected", (100,80), cv2.FONT_HERSHEY_SIMPLEX, 0.75,(0,0,255),2)
# Display tracker type on frame
cv2.putText(frame, tracker_type + " Tracker", (100,20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50,170,50),2);
# Display FPS on frame
cv2.putText(frame, "FPS : " + str(int(fps)), (100,50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50,170,50), 2);
# Display result
cv2.imshow("Tracking", frame)
# Exit if ESC pressed
k = cv2.waitKey(1) & 0xff
if k == 27 : break

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

View file

@ -0,0 +1,120 @@
from PIL import Image
import os
import subprocess
import shutil
backgrounds_file_path = "backgrounds.txt"
info_base_path = r"./info"
negatives_path = r"./negatives"
positives_path = r"./positives"
training_data_base = r"./training_data_"
opencv_path = r".\opencv\build\x64\vc15\bin\opencv_createsamples.exe"
set_sizes = [1, 2, 5, 10]
max_xangle = 0.5
max_yangle = 0.5
max_zangle = 0.5
w, h = 25, 18
class InfoEntry:
info_lst_line: str
image_path: str
def __init__(self, info_line, file_path):
self.info_lst_line = info_line
self.image_path = file_path
def __str__(self):
return f"Image Entry: {self.info_lst_line}, {self.image_path}"
max_x = 750
max_y = 800
# remove too small images
for image in os.listdir("./negatives"):
im = Image.open(f"./negatives/{image}")
width, height = im.size
del im
if width <= max_x:
os.remove(f"./negatives/{image}")
elif height <= max_y:
os.remove(f"./negatives/{image}")
# remove any existing file and assume old data
if os.path.exists(backgrounds_file_path):
os.remove(backgrounds_file_path)
# regenerate the available negatives list
count_negatives = len(os.listdir(negatives_path))
for img in os.listdir(negatives_path):
line = f"{negatives_path}/" + img + "\n"
with open(backgrounds_file_path, 'a') as f:
f.write(line)
info_dirs = []
if len(os.listdir(positives_path)) > max(set_sizes):
print("Your set sizes were larger than the available positive images!")
quit(2)
for img in os.listdir(positives_path):
i = len(info_dirs)
info_dir = f"{info_base_path}{i}"
com = f"{opencv_path} -img positives/" + str(i) + ".png -bg backgrounds.txt -info " + info_dir + "/info.lst" + \
" -pngoutput " + info_dir + " -maxxangle " + str(max_xangle) + " -maxyangle " + str(max_yangle) + " -maxzangle " + str(max_zangle) + \
" -num " + str(count_negatives)
if not os.path.exists(info_dir):
subprocess.call(com, shell=True)
info_dirs.append(info_dir)
for i in set_sizes:
if not os.path.exists(training_data_base + str(i)):
os.makedirs(training_data_base + str(i))
def join_info_folders(info_dirs: list, output_dir: str):
info_dir: str
cur_entry_name = 0
for info_dir in info_dirs:
info_lines = []
with open(info_dir + "/info.lst", 'r') as info_file:
for line in info_file.readlines():
image_path = f"{info_dir}/{line.split(' ')[0]}"
info_lines.append(InfoEntry(line.strip(), image_path))
item: InfoEntry
for item in info_lines:
shutil.copy(item.image_path, f"{output_dir}/{str(cur_entry_name)}.jpg")
with open(f"{output_dir}/info.lst", 'a') as info_file:
to_write = []
to_write.append(str(cur_entry_name) + ".jpg")
to_write = to_write + item.info_lst_line.split(" ")[1:]
to_write.append("\n")
info_file.write(" ".join(to_write))
cur_entry_name += 1
for i in set_sizes:
join_info_folders(info_dirs[:i], training_data_base + str(i))
commands = []
for i in set_sizes:
num_positives = len(os.listdir(training_data_base + str(i)))
if os.path.exists(training_data_base + str(i) + ".vec"):
os.remove(training_data_base + str(i) + ".vec")
com = f"{opencv_path} -info {training_data_base + str(i)}\info.lst -num {num_positives} -w {w} -h {h} -vec {training_data_base + str(i)}.vec"
subprocess.call(com, shell=True)
commands.append(f".\opencv\\build\\x64\\vc15\\bin\opencv_traincascade.exe -data data_{str(i)} -vec .\\{training_data_base + str(i)}.vec -bg .\\{backgrounds_file_path} -numPos {num_positives} -numNeg {num_positives / 2} -numStages 15 -w {w} -h {h}")
if not os.path.exists(".\data_" + str(i)):
os.makedirs(".\data_" + str(i))
for i in commands:
print(f"You are ready to train the models with: \n {i}")