moved cascades to subfolder; added training data output
This commit is contained in:
parent
0c46b9a190
commit
f345468cbf
8 changed files with 35 additions and 7 deletions
|
@ -2,6 +2,8 @@ import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import argparse
|
import argparse
|
||||||
import sys
|
import sys
|
||||||
|
import time
|
||||||
|
import os
|
||||||
import datetime
|
import datetime
|
||||||
|
|
||||||
def init_argparse() -> argparse.ArgumentParser:
|
def init_argparse() -> argparse.ArgumentParser:
|
||||||
|
@ -22,6 +24,12 @@ def init_argparse() -> argparse.ArgumentParser:
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"-f", "--file", nargs="?", help="File to scan instead of using the camera. Useful for generating training data"
|
"-f", "--file", nargs="?", help="File to scan instead of using the camera. Useful for generating training data"
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"-s", "--no-screen", action='store_true', help="Do not show the successful frames"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"-t", "--training-data", action='store_true', help="When set, saves successful face-location images and coordinates to use for future training data"
|
||||||
|
)
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
multiplication_factor = 0.05
|
multiplication_factor = 0.05
|
||||||
|
@ -65,12 +73,22 @@ parser = init_argparse()
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
cap = cv2.VideoCapture(0, cv2.IMREAD_GRAYSCALE) # instead of grayscale you can also use -1, 0, or 1.
|
cap = cv2.VideoCapture(0, cv2.IMREAD_GRAYSCALE) # instead of grayscale you can also use -1, 0, or 1.
|
||||||
faceCascade = cv2.CascadeClassifier(r"./lbpcascade_frontalface.xml") # CHECK THIS FIRST TROUBLE SHOOTING
|
faceCascade = cv2.CascadeClassifier(r"./cascades/lbpcascade_frontalface.xml") # CHECK THIS FIRST TROUBLE SHOOTING
|
||||||
faceCascade_default = cv2.CascadeClassifier(r"./haarcascade_frontalface_default.xml")
|
faceCascade_default = cv2.CascadeClassifier(r"./cascades/haarcascade_frontalface_default.xml")
|
||||||
faceCascade_alt = cv2.CascadeClassifier(r"./haarcascade_frontalface_alt.xml")
|
faceCascade_alt = cv2.CascadeClassifier(r"./cascades/haarcascade_frontalface_alt.xml")
|
||||||
faceCascade_alt2 = cv2.CascadeClassifier(r"./haarcascade_frontalface_alt2.xml")
|
faceCascade_alt2 = cv2.CascadeClassifier(r"./cascades/haarcascade_frontalface_alt2.xml")
|
||||||
faceCascade_alttree = cv2.CascadeClassifier(r"./haarcascade_frontalface_alt_tree.xml")
|
faceCascade_alttree = cv2.CascadeClassifier(r"./cascades/haarcascade_frontalface_alt_tree.xml")
|
||||||
profileFaceCascade = cv2.CascadeClassifier(r"./haarcascade_profileface.xml")
|
profileFaceCascade = cv2.CascadeClassifier(r"./cascades/haarcascade_profileface.xml")
|
||||||
|
|
||||||
|
datestamp = "{:%Y_%m_%d %H_%M_%S}".format(datetime.datetime.now())
|
||||||
|
output_dir = r"./output/" + datestamp + r"/"
|
||||||
|
|
||||||
|
|
||||||
|
if args.training_data:
|
||||||
|
if not os.path.exists(output_dir):
|
||||||
|
os.makedirs(output_dir)
|
||||||
|
with open(output_dir + r"found_faces.csv", 'a') as fd:
|
||||||
|
fd.write(f"frame_name, x, y, width, height\n")
|
||||||
|
|
||||||
tmp, frm = cap.read()
|
tmp, frm = cap.read()
|
||||||
height, width, channels = frm.shape
|
height, width, channels = frm.shape
|
||||||
|
@ -129,14 +147,24 @@ while(True):
|
||||||
minNeighbors=5,
|
minNeighbors=5,
|
||||||
minSize=(30,30)
|
minSize=(30,30)
|
||||||
)
|
)
|
||||||
|
|
||||||
# Draw a rectangle around the faces
|
# Draw a rectangle around the faces
|
||||||
for (x, y, w, h) in faces:
|
for (x, y, w, h) in faces:
|
||||||
|
if args.training_data:
|
||||||
|
frame_name = frames_searched
|
||||||
|
with open(output_dir + r"found_faces.csv", 'a') as fd:
|
||||||
|
fd.write(f"frame_{frame_name}.jpg, {x}, {y}, {w}, {h}\n")
|
||||||
|
cv2.imwrite(output_dir + f"frame_{frame_name}.jpg", frame)
|
||||||
|
|
||||||
faces_found += 1
|
faces_found += 1
|
||||||
adjustment_required = get_adjustment_amount([width, height], x, y, w, h)
|
adjustment_required = get_adjustment_amount([width, height], x, y, w, h)
|
||||||
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255))
|
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255))
|
||||||
|
|
||||||
if args.output:
|
if args.output:
|
||||||
print(f"Adjust right: {adjustment_required[0]}".ljust(90, ' '), flush=True)
|
print(f"Adjust right: {adjustment_required[0]}".ljust(90, ' '), flush=True)
|
||||||
print(f"Adjust up : {adjustment_required[1]}", flush=True)
|
print(f"Adjust up : {adjustment_required[1]}", flush=True)
|
||||||
|
|
||||||
|
if not args.no_screen:
|
||||||
cv2.imshow('frame', frame)
|
cv2.imshow('frame', frame)
|
||||||
|
|
||||||
if args.dashboard:
|
if args.dashboard:
|
||||||
|
|
Loading…
Reference in a new issue