import cv2 import numpy as np import argparse import sys import time import os import datetime def init_argparse() -> argparse.ArgumentParser: parser = argparse.ArgumentParser( prog="FaceDetection", usage="%(prog)s [OPTION]", description="Run face localization" ) parser.add_argument( "-v", "--version", action="version", version=f"{parser.prog} version 1.0.1" ) parser.add_argument( "-d", "--dashboard", action='store_true', help="Flag to enable live dashboard with statistics - requires terminal width of 90 columns or greater" ) parser.add_argument( "-o", "--output", action='store_true', help="show the resultant directions" ) parser.add_argument( "-f", "--file", nargs="?", help="File to scan instead of using the camera. Useful for generating training data" ) parser.add_argument( "-s", "--no-screen", action='store_true', help="Do not show the successful frames" ) parser.add_argument( "-t", "--training-data", action='store_true', help="When set, saves successful face-location images and coordinates to use for future training data" ) return parser multiplication_factor = 0.05 def get_adjustment_amount(imgSize, currentX, currentY, currentW, currentH): current_top_left = [currentX, currentY] current_bottom_right = [currentX + currentW, currentY + currentH] current_top_right = [currentX + currentW, currentY] # find the difference between the left gap and the right gap, divide it by two, and multiply it by the speed scale horizontal_adjustment = multiplication_factor * (currentX - (imgSize[0] - current_top_right[0])) / 2 vertical_adjustment = multiplication_factor * (currentY - (imgSize[0] - current_bottom_right[1])) / 2 return [horizontal_adjustment, vertical_adjustment] frames_searched = 1 faces_found = 0 start_time = datetime.datetime.now() def draw_dashboard(keep_stat_line = False): global frames_searched, faces_found, start_time elapsed_time = datetime.datetime.now() - start_time hours, remainder = divmod(elapsed_time.total_seconds(), 3600) minutes, seconds = divmod(remainder, 60) f_found = f"{faces_found} Faces found".ljust(16, ' ') f_searched = f"{frames_searched} Frames searched".ljust(21, ' ') success_rate = f"{round((faces_found / frames_searched) * 100, 1)}% Success rate".ljust(16, ' ') if keep_stat_line: print(f"{f_found} | {f_searched} | {success_rate} | {round(hours)}h {round(minutes)}m {round(seconds)}s elapsed", flush=True) else: print(f"{f_found} | {f_searched} | {success_rate} | {round(hours)}h {round(minutes)}m {round(seconds)}s elapsed", end="\r", flush=True) parser = init_argparse() args = parser.parse_args() cap = cv2.VideoCapture(0, cv2.IMREAD_GRAYSCALE) # instead of grayscale you can also use -1, 0, or 1. faceCascade = cv2.CascadeClassifier(r"./cascades/lbpcascade_frontalface.xml") # CHECK THIS FIRST TROUBLE SHOOTING faceCascade_default = cv2.CascadeClassifier(r"./cascades/haarcascade_frontalface_default.xml") faceCascade_alt = cv2.CascadeClassifier(r"./cascades/haarcascade_frontalface_alt.xml") faceCascade_alt2 = cv2.CascadeClassifier(r"./cascades/haarcascade_frontalface_alt2.xml") faceCascade_alttree = cv2.CascadeClassifier(r"./cascades/haarcascade_frontalface_alt_tree.xml") profileFaceCascade = cv2.CascadeClassifier(r"./cascades/haarcascade_profileface.xml") datestamp = "{:%Y_%m_%d %H_%M_%S}".format(datetime.datetime.now()) output_dir = r"./output/" + datestamp + r"/" if args.training_data: if not os.path.exists(output_dir): os.makedirs(output_dir) with open(output_dir + r"found_faces.csv", 'a') as fd: fd.write(f"frame_name, x, y, width, height\n") tmp, frm = cap.read() height, width, channels = frm.shape # print(f"{height*.25}, {width}") del tmp, frm #Color is 1, grayscale is 0, and the unchanged is -1 while(True): ret, frame = cap.read() frames_searched += 1 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Detect faces in the image faces = faceCascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30) ) if len(faces) == 0: faces = faceCascade_default.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30,30) ) if len(faces) == 0: faces = profileFaceCascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30,30) ) if len(faces) == 0: faces = faceCascade_alt.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30,30) ) if len(faces) == 0: faces = faceCascade_alt2.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30,30) ) if len(faces) == 0: faces = faceCascade_alttree.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30,30) ) # Draw a rectangle around the faces for (x, y, w, h) in faces: if args.training_data: frame_name = frames_searched with open(output_dir + r"found_faces.csv", 'a') as fd: fd.write(f"frame_{frame_name}.jpg, {x}, {y}, {w}, {h}\n") cv2.imwrite(output_dir + f"frame_{frame_name}.jpg", frame) faces_found += 1 adjustment_required = get_adjustment_amount([width, height], x, y, w, h) cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255)) if args.output: print(f"Adjust right: {adjustment_required[0]}".ljust(90, ' '), flush=True) print(f"Adjust up : {adjustment_required[1]}", flush=True) if not args.no_screen: cv2.imshow('frame', frame) if args.dashboard: draw_dashboard() if cv2.waitKey(1) & 0xFF == ord('q'): break draw_dashboard(keep_stat_line=True) cap.release()