import websockets import asyncio import numpy as np from ultralytics import YOLO import time import cv2 classNames = ["person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush" ] model = YOLO('yolov8s.pt') # Load an official Detect model async def handle_connection(websocket, path): print(f"Connection from: {path}") try: while True: raw_data = await websocket.recv() nparr = np.frombuffer(raw_data, np.uint8).reshape((480, 640, 3)) # frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR) frame = cv2.cvtColor(nparr, cv2.COLOR_BGR2RGB) cv2.imshow("from_remote", frame) # Perform object detection results = model.track(frame, persist=True) for r in results: lines = "" boxes = r.boxes for box in boxes: if box.cls[0].item() == 0 and not box.id is None: # bounding box id = box.id.int().cpu().tolist() # x1, y1, x2, y2 = box.xyxy[0] # # 2.08333 = 1/480 * 1000 or normalize, then save 4 sig-figures and cast to int # # 1.5625 = 1/640 * 1000 or normalize, then save 4 sig-figures and cast to int # x1, x2, y1, y2 = int(x1), int(x2), int(y1), int(y2) # # put box in cam # cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 255), 3) # # class name # cls = int(box.cls[0]) # # object details # org = [x1, y1] # org2 = [x1, y1+50] # font = cv2.FONT_HERSHEY_SIMPLEX # fontScale = 1 # color = (255, 0, 0) # color_w = (255, 255, 255) # thickness = 2 # cv2.putText(frame, classNames[cls], org, font, fontScale, color, thickness) # cv2.putText(frame, str(id), org2, font, fontScale, color_w, thickness) x1, y1, x2, y2 = box.xyxyn[0] x1, y1, x2, y2 = int(x1 * 1000), int(y1 * 1000), int(x2 * 1000), int(y2 * 1000) lines += f"{id} {x1}:{y1} {x2}:{y2}\n" # cv2.imshow('Webcam', frame) # if cv2.waitKey(1) == ord('q'): # break ret = lines.encode('utf-8') cv2.waitKey(80) await websocket.send(ret) except websockets.exceptions.ConnectionClosed: print(f"Client disconnected: {path}") if __name__ == "__main__": start_server = websockets.serve(handle_connection, "0.0.0.0", 6543) asyncio.get_event_loop().run_until_complete(start_server) asyncio.get_event_loop().run_forever()